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Abstract

This study investigates an approach that combines physically-based and conceptual model features in two stages of

distributed modeling: model structure development and estimation of spatially variable parameters. The approach adds more

practicality to the process of model parameterization, and facilitates an easier transition from current lumped model-based

operational systems to more powerful distributed systems. This combination of physically-based and conceptual model features

is implemented within the Hydrology Laboratory Research Modeling System (HL-RMS). HL-RMS consists of a well-tested

conceptual water balance model applied on a regular spatial grid linked to physically-based kinematic hillslope and channel

routing models. Parameter estimation procedures that combine spatially distributed and ‘integrated’ basin-outlet properties

have been developed for the water balance and routing components. High-resolution radar-based precipitation data over a large

region are used in testing HL-RMS. Initial tests show that HL-RMS yields results comparable to well-calibrated lumped model

simulations in several headwater basins, and it outperforms a lumped model in basins where spatial rainfall variability effects

are significant. It is important to note that simulations for two nested basins (not calibrated directly, but parameters from the

calibration of the parent basin were applied instead) outperformed lumped simulations even more consistently, which means

that HL-RMS has the potential to improve the accuracy and resolution of river runoff forecasts.
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1. Introduction

Accounting for spatial variability of basin physio-

graphic properties as well as meteorological forcing

such as precipitation and temperature through dis-

tributed hydrologic modeling continues to be a very

active area of research and development in hydrology.

The growing availability of radar-based precipitation

estimates (Seo and Breidenbach, 2002; Young et al.,

2000) and other sets of spatial data has intensified this

line of research in recent years. To the US National

Weather Service (NWS), distributed modeling is of

particular interest and significance in that, among

other benefits, it may allow streamflow prediction at

interior locations of the basin where no streamflow

observations exist, and hence can potentially revolu-

tionize operational flood forecasting.

The literature reports numerous distributed models

and modeling approaches that address a wide variety
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of issues. They range in complexity from the so-called

‘physically based fully distributed’ (Wigmosta et al.,

1994; Abbott et al., 1986; Garrote and Bras, 1995;

Julien et al., 1995) to ‘semi-distributed’ (Boyle et al.,

2001; Obled et al., 1994; Schumann, 1993), and to

conceptual lumped rainfall-runoff models applied at

smaller scales (Michaud and Sorooshian, 1994;

White, 1988). In terms of computational elements,

they may be built on grid (Ogden and Julien, 1994;

Kouwen and Garland, 1989), small sub-basins

(Carpenter et al., 2001; Obled et al., 1994), triangu-

lated irregular network (TIN) (Goodrich et al., 1991)

and stream tubes (Grayson et al., 1992; Moore and

Grayson, 1991). Recently, efforts have been under-

taken to account for the effects of ‘sub-grid’

heterogeneity on hydrologic processes (Koren et al.,

1999; Beven, 1995).

In spite of the more prevalent use of physical

equations and the use of finer resolution data, the

emerging picture, however, is that the use of more

complex models does not necessarily result in better

hydrograph simulation at the basin outlet. The current

sentiment on distributed modeling is perhaps best

summarized by Seyfried and Wilcox (1995):

One of the disadvantages of physically based

models is that they require very much more input

information than their more empirical, lumped-

parameter counterparts. Thus, parameterization

and validation become major tasks. Despite the

much greater effort required to parameterize,

validate, and run physically based models, simu-

lated results often provide only slightly better or

even worse correspondence with measured values

than lumped-parameter models (Beven, 1989;

Loague, 1990; Wilcox et al., 1990; Grayson et al.,

1992). This has prompted many to question

whether physically based models are worth the

effort, at least outside strictly research appli-

cations…

The model comparisons of Neuf (1981), Loague

and Freeze (1985), Michaud and Sorooshian (1994),

and Loague (1990) also support this sentiment.

The literature identifies scale and parameter

estimation as the two biggest hurdles to overcome in

distributed modeling. Most distributed models are

based on point process equations which may poorly

represent watershed scale processes because of

vertical and horizontal heterogeneities of basin

properties. In theory, parameters of physically based

models can be measured or calculated based on direct

measurements of physical quantities. However, in

practice, physically based model parameters cannot

be determined from measurable physical quantities

because of the non-linearities and structural hetero-

geneities of hydrological systems (Beven, 1995). This

leads to the necessity of calibrating the so-called

‘effective’ parameters at the grid scale to generate

reasonable results at the watershed scale. The

calibration procedure becomes more complicated

because effective parameters represent local proper-

ties, and they are less identifiable than lumped

parameters from hydrograph analysis. When par-

ameter values are adjusted to calibrate a model, one

must question if there is still a physical significance to

the parameter estimates or if at this point the

physically-based model has reverted to a type of

elegant black box (Loague, 1990). In response to these

concerns, a number of critiques and discussions of

physically-based models have appeared in the recent

literature. For physically-based models, parameter

error may result from the inability to represent areal

distributions on the basis of point measurements

(Loague and Freeze, 1985). Beven (1989) continued

this critical series by concluding that current physi-

cally-based models are not really based on physics.

Woolhiser (1996) elaborated on this sentiment in the

context of the two classes of criticisms of physically

based models. He stated that if the models have a true

physical basis, then modelers should be able to

estimate the parameters a priori or measure them in

the field.

While there are questions about the level of

complexity justified in hydrologic models and the

degree to which parameterizations can be physically-

based as described above, there are also indications

that some degree of basin discretization and the use of

radar-based products can nevertheless improve

simulation accuracy. For example, Michaud and

Sorooshian (1994) found that a complex distributed

model calibrated at the basin outlet was able to

generate simulations at eight internal points that were

at least as accurate as the outlet simulations. These

results underscore one of the main advantages of

distributed parameter hydrologic modeling: the ability
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to predict hydrologic variables at interior points. They

also concluded that a simple distributed model proved

to be just as accurate as a complex distributed model

given that both were calibrated and noted that model

complexity does not necessarily lead to improved

simulation accuracy. However, parameterization pro-

blems and data uncertainties can eliminate benefits of

the semi-distributed approach when applied to mid/

large (300–3000 km2) basins having significant

damping effects.

In light of these recent modeling trends and issues,

we argue that what is needed is to reconsider the use

of simpler approaches, as expressed by Robinson and

Sivapalan (1995):

…work towards finding connections between the

physically based and conceptual models has been

inadequate, although this is precisely what is

required for the advancement of hydrological

modeling for predictive purposes.

We believe that lumped models and lumped

modeling experience are yet to be fully exploited

in distributed modeling, and that comprehensive

comparative analysis of conceptual lumped and

physically-based distributed models is needed to

derive full benefit from them. Note that, while most

conceptual lumped models do not explicitly use the

classical equations of mass and momentum conserva-

tion, they do incorporate fundamental physical

concepts supported by field experiments. As such,

over the range of scales where conceptual models do

work well, they may serve as building blocks for

distributed modeling systems.

The purpose of this paper is to describe an

approach that combines lumped conceptual and

distributed model features in the development and

parameterization of a modeling system referred to as

the Hydrology Laboratory Research Modeling System

(HL-RMS). HL-RMS provides a modeling framework

in which lumped, semi-distributed, and fully distrib-

uted approaches may be constructed and tested.

Currently, HL-RMS consists of a well-tested concep-

tual water balance model applied on a regular spatial

grid and physically based kinematic hillslope and

channel routing models. A parameter estimation

procedure is being developed that combines analyses

of distributed basin properties and an integrated basin

response at a gaged outlet. While the discussion of the

model and results will be at the broad scientific level,

particular emphasis will be placed on science and

application issues facing the NWS in its river and

flash flood forecasting mission.

2. Hydrology laboratory research modeling system

(HL-RMS) description

2.1. System structure

HL-RMS is a flexible modeling system, able to use

grid cells or sub-basins as the computational elements

for rainfall-runoff modeling. Currently, HL-RMS is

defined on a regular rectangular grid as shown in

Fig. 1a. Each grid cell consists of a water balance

component and a hillslope and channel routing

component. A number of conceptual hillslopes are

defined to make overland flow distances physically

realistic for the relatively large (,16 km2) cell size. A

drainage density parameter is used to subdivide a cell

into equally sized overland flow planes as seen in Fig.

1b. Conceptual hillslopes drain water to a conceptual

channel within the same grid cell. A conceptual

channel usually represents the highest order stream of

a selected grid cell. It is assumed that all hillslopes

have the same properties inside each grid cell but they

may be different from cell to cell. The main channel

length within each cell is assumed to be equal to a cell

diagonal distance. Cell-to-cell channel routing is done

using a flow direction grid like that illustrated in Fig.

1a. A modified version of the algorithm described by

Wang et al. (2000) was developed to generate the flow

direction grid. The algorithm automatically generates

a coarser resolution flow direction grid from higher

resolution DEM data. As a result, the basin boundaries

and channel structure match reasonably well with

high resolution basin properties (Fig. 1a). To facilitate

efficient routing calculations, the drainage network

depicted in Fig. 1a was translated into a computational

sequence of grid cells in an upstream to downstream

order. The same method for storing the computational

grid sequence was used in the Nile Forecast System

(Koren and Barrett, 1995).

Each grid cell consists of a water balance

component and a hillslope and channel routing

component. Fast response runoff from the water
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balance model is routed over conceptual hillslopes

within each cell to a conceptual channel. Slow

response runoff is assumed to enter the channel

system directly from the soil, and therefore, bypass

the hillslope routing. There is no physical connection

between soil moisture states in adjacent grid cells. The

conceptual channel is the only source of water

exchange between neighboring pixels. While this

may be considered a weakness in the current

distributed system, some field data support this ‘zero

lateral conductivity’ assumption (Watson et al.,

1998).

The water balance component of the current

version of the HL-RMS uses the Sacramento Soil

Moisture Accounting Model (SAC-SMA), and hill-

slope-channel routing employs the kinematic wave

model. Several factors played a role in this selection.

Use of the SAC-SMA is a practical choice because

NWS hydrologists have great experience with lumped

applications of the model. Also, the work of Koren

et al. (2000) established relationships between SAC-

SMA parameters and soil properties, making it

possible to run simulations using parameter estimates

that vary within a basin.

The kinematic wave model is well tested, and it is

successfully used in watershed modeling (Goodrich

et al., 1991; Willgoose and Kuczera, 1995; Koren and

Barrett, 1995; Bell and Moore, 1998; Georgakakos,

2002; Vieux and Moreda, 2003). Although accuracy

of the kinematic model reduces in hydraulically mild

slopes (Fread, 1993; Singh, 1996), it is appropriate to

use it in the first version of the HL-RMS mainly for

two reasons: (1) it will be used mostly for headwater

basins where lateral inflow effects dominate over

wave propagation effects, and (2) flood prediction (the

main goal of the NWS) is the most critical in rather

steep topography (e.g. most common terrain and

channel slopes in study region were well above 10 ft/

ml). Another consideration was the high compu-

tational efficiency and flexibility of this algorithm as

demonstrated in its earlier application to the Nile

basin (Koren and Barrett, 1995). We anticipate that in

operational applications over large river basins the

HL-RMS will be combined with a dynamic routing

model which is now available in the NWS River

Forecasting System (Sylvestre and Sylvestre, 2002).

2.2. Water balance component

The SAC-SMA is a conceptual model typically

applied in a lumped mode to represent spatially

heterogeneous runoff processes over river basins

Fig. 1. Cell-to-cell drainage network (a), and conceptual hillslopes of a grid cell (b).
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ranging from tens to a few thousand square kilo-

meters. There are strong physical arguments and

application results to support the model structure and

algorithms. A detailed description of the model and its

sketches can be found in Burnash (1995) and Duan

et al. (2001). The basic design of the SAC-SMA

centers on a two layer structure: a relatively thin upper

layer, and usually a much thicker lower layer which

supplies moisture to meet the evapotranspiration

demands. Each layer consists of tension and free

water storages that interact to generate soil moisture

states and six runoff components. Fast response

components include impervious, surface and direct

runoff, and slower response components include

interflow, supplemental and primary ground water

runoff. The free water storage of the lower layer is

divided into two sub-storages which control sup-

plemental and primary ground water flows, respect-

ively. Partitioning of rainfall, P; into surface runoff

and infiltration is governed by the upper layer soil

moisture deficit, Duz; and the percolation potential of

the lower layer. It assumes a saturation-excess

mechanism for the upper layer storages. No surface

runoff occurs before the tension and free water

capacities of the upper layer (the full saturation of

the upper layer) is filled, other words the upper layer

saturation demand is satisfied. After that, rainfall-

runoff partitioning is similar to an infiltration-excess

type mechanism, and surface runoff rate Rs becomes a

function of percolation, Iperc :

Rs ¼
P 2 Iperc; P . Duz

0; P # Duz

(
ð1Þ

The potential percolation rate is a non-linear function

of the lower layer saturation, ulzw; and the upper layer

free water saturation, uuzf :

Iperc ¼ ½I0 þ Imax·ð1 2 ulzwÞ
x�uuzf ð2Þ

where Imax is the maximum percolation rate under dry

conditions, I0 is the maximum percolation rate under

saturated conditions, and is an exponent value that

controls the shape of the percolation function at

intermediate values of lower zone moisture content.

Drainage from each free water is a linear function of

its soil moisture content.

2.3. Hillslope and channel routing component

The kinematic wave approximations to the full

continuity and momentum equations of overland flow

were defined as

›h

›t
þ Lh

›q

›x
¼ Rs; 0 # x # Lh ð3Þ

and

q ¼
2D

ffiffiffi
Sh

p

nh

h5=3 ¼ qsh
5=3 ð4Þ

where h is an overland flow depth, q is discharge per

unit area of hillslope, Rs is a fast runoff from the water

balance simulations, in m/s, Sh is a hillslope slope

(dimensionless), nh is a hillslope roughness coeffi-

cient, in s/m1/3, D is a drainage density parameter in

m21, Lh ¼ 1=ð2DÞ is a hillslope length, t is time, and x

is the distance along the hillslope. Parameter qs is

expressed in s21 m22/3. Overland flow characteristics

Sh; nh; and D have to be defined for each grid cell. A

boundary condition of zero flow was assumed at

hillslope ridges.

Similar kinematic wave equations were used for

the channel routing at each grid cell:

›A

›t
þ

›Q

›x
¼ ðqLh

þ RgÞ
fc
Lc

; 0 # x # Lc ð5Þ

and

Q ¼ QsA
m ð6Þ

where channel cross-section, A; and discharge, Q; can

vary from cell to cell and within each cell, the right-

hand side term of Eq. (5) is a lateral inflow per unit

length of channel, qLh
is routed overland flow rate at

the hillslope outlet, Rg is a slow runoff component

from the water balance simulations, fc is a grid cell

area, Lc is a channel length within a cell, m is an

exponent parameter, and Qs is a parameter (referred as

a specific discharge) which is expressed in m3/s/m2m.

A physical meaning of the specific discharge will be

discussed in Section 3. The upper boundary condition

at each grid cell ðx ¼ 0Þ is the total discharge from all

grid cells draining into the current cell. A fairly

general finite-difference scheme (Smith, 1980)

employing weighting factors a and b in the spatial
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and temporal dimensions was used in this study:

›Y

›t
¼

1

Dt
½aðYi; jþ1 2 Yi; jÞ

þ ð1 2 aÞðYiþ1; jþ1 2 Yiþ1; jÞ� ð7Þ

›Y

›x
¼

1

Dx
½bðYiþ1; jþ1

2 Yi; jþ1Þ

þ ð1 2 bÞðYiþ1; j 2 Yi; jÞ� ð8Þ

where subscripts i and j refer, respectively, to

distance and time, Dx and Dt are the spatial and

temporal increments, and Y is a variable under

consideration. Weighting factors lie within the

interval 0 # a;b # 1: In the case of b – 0; the

resulting equations become non-linear, and Newton’s

iteration method (Chow et al., 1988) was applied.

The numerical stability of the scheme depends

strongly on the ratio of time-space weighting factors

(Smith, 1980):

a

b
# Cr #

1 2 a

1 2 b
ð9Þ

where the Courant number, Cr; can be defined as

cDt=Dx; in which c is the wave celerity for the

kinematic approximation. The scheme is uncondi-

tionally stable only for values a ¼ 0 and b ¼ 1:

These values of the weighting parameters are best for

our needs because HL-RMS will be applied over a

wide range of channel hydraulic conditions where it

will be difficult to keep track of all possible

restrictions on the Courant number during run time.

The strength of the scheme is that as a and b depart

from the value of 0.5, first order truncation errors

increase independently of the ratio Dx=Dt:

3. HL-RMS parameterization using DEM-GIS

data

Water balance and routing model parameters are

assumed to be constant within each grid cell, however,

they can vary from cell to cell. Thus, spatially variable

parameter grids should be generated over the area of

interest. The approach adopted here is a two-step

procedure: derivation of a priori parameter grids, and

adjusting of these grids using observed outlet hydro-

graphs. Derivation of a priori parameter grids is a

critical step to guarantee the success from a parameter

adjusting step based on a basin response. Rinaldo et al.

(1995) found that the inverse procedure of obtaining

the local basin properties (in their case basin width

function) from the basin response is not reliable.

Therefore, reasonable spatial parameter patterns

should be defined independently from basin proper-

ties. The basic idea used in this study is to combine

distributed grid cell data (e.g. slope, soil properties)

with integrated basin properties observed at the outlet

(e.g. rating curve data). While this idea was applied in

the first step of the routing parameter estimation

procedure, it was used only in the second step of water

balance model parameterization.

3.1. Estimation of SAC-SMA parameters based on soil

data

Although there are strong physical arguments to

support the SAC-SMA model, its 16 parameters

(Table 1) cannot be measured directly. Manual and

automatic procedures to estimate SAC-SMA par-

ameters for lumped model applications are well

defined (Burnash, 1995; Smith et al., 2003; Boyle

et al., 2000; Hogue et al., 2000). The procedures are

based solely on input–output data analysis. Conse-

quently, they do not provide any information on intra-

basin parameter variability, which is desirable infor-

mation for the implementation of a distributed model.

To account for the spatial variability within basins, a

priori SAC-SMA parameter grids developed by Koren

et al. (2000) were used.

Koren et al. (2000) developed a set of equations to

derive 11 major SAC-SMA parameters (these par-

ameters are highlighted in Table 1) from soil texture,

hydrological soil group, and soil depth. These

equations were developed based on both physical

reasoning and empirical relationships. The main

assumption was that tension water storages of the

SAC-SMA model were related to available soil water

(difference between field capacity and wilting point),

and that free water storages were related to gravita-

tional soil water. Available soil water and gravita-

tional soil water were derived from soil properties,

which could be inferred from soil texture: porosity,

field capacity, wilting point, and hydraulic conduc-

tivity. Using 1-km soil texture data estimated for 11

soil layers (Miller and White, 1999), Koren et al.
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(2000) generated a priori SAC-SMA parameter grids

covering the conterminous US.

Results from lumped simulations using basin-

averaged a priori parameters (Koren et al., 2000;

Duan et al., 2001; Koren et al., 2003) suggest that a

priori estimates are reasonable initial values for

manual or automatic calibrations.

3.2. Estimation of routing parameters using DEM and

channel hydraulic data

3.2.1. Hillslope routing parameters

As follows from Eqs. (3) and (4), three parameters

are defined for overland flow routing: hillslope slope,

roughness, and drainage density (or hillslope length if

available). Note that in current model structure,

hillslope slope and roughness may vary from cell to

cell, but not among the conceptual hillslopes within a

cell. Representative hillslope slopes are estimated

from DEM data (30-m DEM data for basin scale

applications, and 400-m DEM data for regional scale

applications) by first computing the local slope of

each DEM cell in the study domain, and then

averaging all of the DEM cell slopes in each model

cell (Reed et al., 2002). Spatially variable hillslope

roughness values could be related to land use data

based on a lookup table (Skahill and Johnson, 1999).

However, a lookup table is very subjective, and it

offers limited guidance in defining spatial variability

because within a given land use category, published

roughness values cover wide ranges of possible values

that often overlap with the ranges assigned to other

land use categories. Initial HL-RMS tests have shown

more sensitivity to channel routing parameters than

hillslope parameters; the tests also suggest that using

spatially consistent hillslope roughness has been

satisfactory. Therefore, in simulation runs presented

here, a constant value of hillslope roughness (0.15)

has been assigned for all model cells. This value is in

the middle of lookup table ranges for agriculture and

rangeland land use types which predominate in the

basins being modeled.

For drainage density, Dingman (1993) notes that

values ranging from 2 to 100 km21 have been

reported in the literature, and that drainage density

varies depending on climate and geology. For areas

we are modeling in the dry Southern Great Plains

region of the US, a spatially constant value of

Table 1

SAC-SMA model parameters and their feasible ranges

No. Parameter Description Ranges

1 UZTWM The upper layer tension water capacity (mm) 10–300

2 UZFWM The upper layer free water capacity (mm) 5–150

3 UZK Interflow depletion rate from the upper layer free water storage

(day21)

0.10–0.75

4 ZPERC Ratio of maximum and minimum percolation rates 5–350

5 REXP Shape parameter of the percolation curve 1–5

6 LZTWM The lower layer tension water capacity (mm) 10–500

7 LZFSM The lower layer supplemental free water capacity (mm) 5–400

8 LZFPM The lower layer primary free water capacity (mm) 10–1000

9 LZSK Depletion rate of the lower layer supplemental free water storage

(day21)

0.01–0.35

10 LZPK Depletion rate of the lower layer primary free water storage (day21) 0.001–0.05

11 PFREE Percolation fraction that goes directly to the lower layer free water

storages

0.0–0.8

12 PCTIM Permanent impervious area fraction

13 ADIMP Maximum fraction of an additional impervious area due to

saturation

14 RIVA Riparian vegetation area fraction

15 SIDE Ratio of deep percolation from lower layer free water storages

16 RSERV Fraction of lower layer free water not transferrable to lower layer

tension water
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2.5 km21 has been assumed. This value is consistent

with a hillslope length of 200 m that is most common

for the studied region.

3.2.2. Channel routing parameters

Channel parameters Qs and m of the discharge and

channel cross-section relationship (Eq. (6)) must be

prescribed for all grid cells of interest. There are two

options to define these parameters: (1) use of the

Chezy–Manning approximation of a discharge and

cross-section relationship assuming a prismatic chan-

nel, referred as a channel shape method, and (2) direct

estimation of these parameters from an empirical

discharge and cross-section relationship, referred as a

rating curve method.

The basic idea for both methods is to disaggregate

information from outlet measurements representing

basin integrated properties into interior grid cell

parameters using local geomorphological properties.

The US Geological Survey (USGS) flow measure-

ment data, including top width B; cross-section A;

channel depth H; and discharge at stream gaging

stations are used in this study. Eqs. (10) and (11) are

used to define the relationship between the cross-

section shape parameters a and b and measured values

of B; A; and H assuming a prismatic channel:

B ¼ aHb ð10Þ

B ¼ ½aðb þ 1Þb�1=ðbþ1ÞAb=ðbþ1Þ ð11Þ

In channel shape method, parameters Qs and m are

defined from the Chezy–Manning equation assuming

a prismatic channel:

Q ¼

ffiffiffi
Sc

p

nc

½aðb þ 1Þb�22=3ðbþ1ÞAðbþ5=3Þ=ðbþ1Þ ð12Þ

It follows from Eq. (12) that

Qs ¼

ffiffiffi
Sc

p

nc

½aðb þ 1Þb�22=3ðbþ1Þ
;

m ¼
b þ 5=3

b þ 1

ð13Þ

where Sc and nc are channel slope and roughness,

respectively, and a and b are channel shape par-

ameters defined previously.

Four channel property grids must be defined for

this option: slope, roughness, and shape parameters,

a and b: Channel slope at each grid cell is derived

from high resolution (e.g. 30 m) DEM data. Channel

slopes are computed for synthetic stream segments

defined by the DEM, and the average slope of the

segments forming the largest stream branch within a

model cell is assigned to that cell. As should be the

case, channel slope estimates are significantly differ-

ent than the hillslope slope values. Channel roughness

values are calculated using an empirical equation

derived by Tokar and Johnson (1995) based on

analyses of a number of stream channels in the US:

nc ¼ noS0:272
c F20:00011 ð14Þ

where F is the upstream drainage area. Locally

applicable values for the coefficient no can be

estimated from the known values of roughness, nc;o;

and slope, Sc;o; at the basin outlet. Outlet roughness is

calculated from the Chezy–Manning equation using

flow measurements. Because of data errors and the

dependency of roughness on flow conditions, a number

of nc;o values may be observed. In our applications,

values at high flow levels are preferred because of the

importance of flood modeling.

Channel shape parameter values are first estimated

at the basin outlet by fitting a curve to a plot of A vs. B

data. Two basic geomorphologic assumptions that

follow from channel geometry laws (Strahler, 1957;

Horton, 1945) are used to estimate channel shape

parameters at upstream cells:

(1) the ratio of channel-forming flows at different

cells, rQ;i; equals the ratio of drainage areas, F;

above these cells:

rQ;i ¼
Qi

Qo

¼
Fi

Fo

ð15Þ

(2) the ratio of channel cross-sectional areas of

different channels, rA;i; is a known function of

stream orders. In this study, we adopted a

function suggested by Gorbunov (1971):

rA;i ¼
Ai

Ao

¼
0:0130:83kc;i20:83kc;o

R
kc;o2kc;i

l

ð16Þ

In Eqs. (15) and (16), the subscript ‘i’ denotes any

upstream cell and the subscript ‘o’ denotes the value
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at the outlet, Rl is Horton’s length ratio, and kc is the

stream order. An advantage of using this stream order

relationship rather than relationships that are strictly

functions of drainage area is that the Rl parameter can

be varied to reflect local characteristics. In our

analysis, we use Rl ¼ 2:1: To identify the stream

order of each model cell, Rzhanitsyn’s classification

(Rukovodstvo, 1989) defining stream order as a

function of stream length (Table 2), and the Willemin

(2000) formula defining the relationship between

channel length (L, km) and drainage area (F; km2)

were used:

L ¼ 1:6F0:58 ð17Þ

Distributed ai values can then be back-calculated

from Eq. (11) for a selected flow level at the outlet,

and estimated values of rA;i and rQ;i from Eqs. (15) and

(16), respectively,

ai ¼ ðb þ 1Þ2b

ffiffiffiffi
Sc;i

p
nc;i

ðrA;iAoÞ
m

rQ;iQo

" #3ðbþ1Þ=2

ð18Þ

In our applications, the shape parameter b is

assumed to be constant within a basin, equaling an

estimated value at the outlet. With known channel

geometry at each cell, values of channel specific

discharge, Qs; and exponent parameter m are

estimated from Eq. (13) and used for kinematic

routing calculations.

In the rating curve method, the channel specific

discharge ðQsÞ and the exponent ðmÞ in Eq. (6) are

estimated at the outlet directly by fitting a curve to the

Q vs. A measured data. The same geomorphologic

assumptions are used to estimate Qs and m values at

upstream cells. From Eqs. (15) and (16), it can be

shown that specific discharge at ith grid cell is a

function of specific discharge at the outlet:

Qs;i ¼ Qs;o

Fi

Fo

rm
A;i ð19Þ

As in the channel shape method, the exponent

parameter m is a constant that is equal to an estimated

outlet value. An advantage of this method is that it

does not require estimation of channel slope and

roughness at upstream points. However, because of

this, the method may poorly represent channel

geometry if there are distinct portions of basin,

which have significant differences in average channel

slopes (e.g. transition from mountain region to a

plain). Note that values of the specific discharge and

exponent parameters from these two options may

differ because of empirical curve fitting to different

experimental data. From Eqs. (11), (16), and (19) it

can be shown that

Qs;i

Qs;o

 !
1

¼
Qs;i

Qs;o

 !
2

r
m22m1

A;i ð20Þ

where subscripts 1 and 2 denote estimates from the

first and second methods, respectively. Eq. (20)

suggests that specific discharge ratios from the two

options are equal if the exponent parameters are equal.

Fig. 2 compares discharge and channel cross-section

area relationships derived from the channel shape and

rating curve methods. As seen from the figure, both

methods represent reasonably well measured data

with slightly better approximation of low discharges

from the rating curve method.

3.3. Modification/adjustment of model parameters

Some tests of a priori parameters of the SAC-SMA

model in lumped simulations were presented in Koren

et al. (2000), Duan et al. (2001), and Koren et al.

(2003). While overall statistics of simulation results

showed that a priori parameters produced similar

simulations to those using carefully calibrated

Table 2

Stream order definition based on channel length or area above

Stream order Channel length (km) Area above (km2)

1 0.8 0.3

2 1.5 0.9

3 2.8 2.7

4 5.1 7.6

5 9.3 21.6

6 16.9 61.3

7 31.0 176.3

8 57.0 509.4

9 104.0 1452.0

10 190.0 4149.0

11 338.0 11,317.0

12 620.0 32,562.0

13 1140.0 82,908.0

14 2090.0 235,754.0

15 3810.0 663,862.0
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parameter sets for a number of river basins, it was

found that these derived relationships could not

account for some specific local river basin conditions.

Consequently, the accuracy of a priori parameters can

vary for different regions. As an example, the

estimated parameters of the lower layer free water

storage may not be reliable in regions with deep

ground water because soils information is defined

only to a depth of 1.5–2.5 m. Other limitations arise

because the approach is based on physical assump-

tions regarding relationships between model par-

ameters and soil properties, and among soil

properties themselves. Although most assumptions

are obvious, some quantitative expressions were

assigned empirically using SAC-SMA calibration

results from a limited number of river basins. State

Soil Geographic Database (STATSGO) data consist

of soil texture data derived from 1:250,000 scale soil

maps and re-sampled into 1 £ 1 km2 grids for 11 soil

layers. Another limitation on the reliability of a priori

parameters is that in the original STATSGO data only

representative texture values are available over large

areas (100–200 km2 in some regions). Some concerns

apply to the reliability of a priori hillslope and channel

routing parameters as well. Therefore, to obtain

operational predictions of the highest possible accu-

racy, a priori parameters should be adjusted if there

are observed rainfall-discharge data. The main

objective of deriving a priori parameters is to give

not only reasonable initial estimates but an indication

of their spatial pattern as well.

The HL-RMS has a flexible mechanism for

assigning parameter sets. The basic option is to select

from grids of a priori parameters generated over large

regions. These parameters can be easily replaced by a

constant value or scaled to a desired spatial average

value over selected local watersheds. The latter

method is used to adjust SAC-SMA water balance

model parameters. Koren et al. (2003) used ratios of a

priori parameters to scale parameters from a nearby,

calibrated basin to estimate parameters for ungaged

basins. They concluded that while a priori grids are

beneficial in regional analysis to account for a spatial

pattern of parameters, scaling is helpful in removal of

their local biases. The HL-RMS can use this approach

to scale a priori SAC-SMA parameter grid cell values

over selected watershed by the ratio of the SAC-SMA

parameter from lumped calibration to the average

parameter value from a priori grid. Because calibrated

SAC-SMA parameters are scale dependent (Koren

et al., 1999; Finnerty et al., 1997), some further fine

tuning of selected scaled parameters might be

required in distributed simulations. Fortunately, the

scale effect is reduced significantly if the ratio of

calibration to distributed simulation scales decreases.

Koren et al. (1999) observed about a 3% runoff

difference when calibrated SAC-SMA parameters

derived for a 1000 km2 basin were applied at a grid

scale of 16 km2.

A scaling procedure is also used to adjust

kinematic routing parameters. Because there is no

lumped equivalent to compare, adjustment is per-

formed by a trial-and-error process comparing flood

event shape and timing.

4. Results and discussion

Even though HL-RMS is still under development

and much work remains in the areas of parameteriza-

tion and calibration, it is appropriate to present results

from testing the model components and as a whole. In

this section, we present preliminary results that

provide information on the practicality and flexibility

of HL-RMS. There were no significant calibration

Fig. 2. Discharge and channel cross-section area relationships

generated using the channel shape (thick line) and the rating curve

(thin line) methods for the Baron Fork at Eldon; measured data are

shown in circles.
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efforts in these distributed simulations. The tests

described here were performed on watersheds within

the Arkansas—Red River Basins in Oklahoma shown

in Fig. 3. The main reason for this is that this region

has the longest archive of 4-km NEXRAD-based

multi-sensor precipitation grids, and these rainfall

estimates have been evaluated more thoroughly

(Johnson et al., 1999; Young et al., 2000) than those

produced in other parts of the country. In addition,

these basins had few complications such as snow,

reservoirs, and complex topography such as mountai-

nous areas. All basins shown in Fig. 3 are being

studied as part of the Distributed Modeling Inter-

comparison Project (DMIP) (DMIP, 2002) initiated by

NWS. It is expected that comprehensive analysis of

DMIP results will be published this year in the special

issue of the Journal of Hydrology. Here, we will

discuss specific results for only a few of these basins.

4.1. HL-RMS application over a large region

Two main goals of this application are to under-

stand the overall performance of HL-RMS without

any parameter calibration and to test the compu-

tational efficiency of the distributed system applied

over a large region. The entire Arkansas River basin in

Oklahoma (Fig. 3) is used in this study. With a total

drainage area of 409,300 km2, the basin encompasses

a wide variety of climatic conditions, ranging from an

arid/semi-arid region in the western part to a humid

region in the eastern part. Annual precipitation varies

from 300 mm in the northwest portion of the region to

1500 mm in the southeastern portion. Potential

evaporation varies much less throughout the region.

Consequently, significant differences in annual runoff

for the northwest (2 mm) and southeastern (700 mm)

portions of the basin are present. The steep gradient of

climatological annual runoff coefficient from the west

to the east can be seen in Fig. 4.

The 4 km grid cells used in NWS algorithms to

map multi-sensor precipitation are selected as the

basic modeling unit. The 4-km resolution is adequate

to resolve important spatial variability in rainfall that

can occur across basins modeled by NWS operational

offices, while still maintaining acceptable compu-

tational performance. Certainly, there is a lower limit

Fig. 3. Test region in the Arkansas-Red River basins, and DMIP watershed locations.
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on the basin size that can be modeled with this

resolution. Some effect of grid resolution will be

discussed in Section 4.2.

SAC-SMA parameter grids at the 4 km scale were

generated as simple averages from 1-km a priori

parameter grids available over the conterminous US

(Section 3.1). These grids display a large variability of

basin properties that affect runoff generation processes

over this region. As one would expect, a deeper soil

layer has heavier soils. Therefore, a uniform soil

profile assumption may be not valid for rainfall-runoff

modeling. The derivation of a priori SAC-SMA grids

used in this study accounted for heterogeneous profile

properties. There is no clear pattern in parameter

variation from the west to the east as there is with

observed annual runoff (Fig. 4). Rather, the SAC-

SMA parameters display some similarity with a

stream channel structure.

Routing parameter grids are derived using

measured discharge data from only a few stations on

the main stem of the Arkansas river. The simpler

rating curve method from Section 3.2.2 is used to

estimate discharge and channel cross-section relation-

ship parameters ðQs and mÞ at seven gage locations.

Table 3 lists these gages and estimated parameters at

these points. Note, that the most downstream gage

parameters may be not representative because of

reservoir effects. A parameter estimation procedure at

upstream grid cells is applied sequentially from

downstream to upstream gages independently. At

each estimation loop, grid cell parameters above a

selected gage, estimated previously from the next

downstream gage, are overwritten by new estimates

from the selected upstream gage. Fig. 5 is a plot of

three consecutive specific discharge ðQsÞ grids

generated using only the most downstream gage, the

two most downstream gages, and all seven gages. As

seen from Fig. 5, the overall spatial pattern of specific

discharge grids reasonably reproduces the stream

channel structure. The most significant changes occur

at the most upstream gages. Fig. 5 also suggests that

the routing parameter estimation procedure is robust.

Plots a and b in this figure display much similarity

although they were generated using two outlets that

represent as much as two time different upstream

areas.

A continuous HL-RMS run for a two-year period

was performed using all a priori parameter grids. For

an NWS operational application, this type of run is

feasible. A one month simulation in a quasi-forecast

mode for the entire Arkansas River basin required just

10–15 min of CPU time on an HP9000/J5000 work-

station. We do not initially expect accurate hydro-

graph simulations in many parts of the basin because a

priori estimates may not account for some local

conditions, and because there are numerous processes

Fig. 4. Climatological annual runoff coefficient (Annual Runoff Ratio) distribution over Arkansas-Red River basins. X-axis is the West

Longitude, and Y-axis is the North Latitude.
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Table 3

Estimated parameters of discharge and channel cross-section relationships at selected gages on the main stem of the Arkansas river (from

downstream to upstream)

Outlet name Latitude Longitude Drainage area (km2) Specific discharge, Qs (m3/s/m2m) Power parameter (m)

Ft. Smith 35.39 294.43 388,440 0.0008 2.000

Tulsa 36.14 296.01 193,253 0.0133 1.670

Arkansas City 37.06 297.06 113,217 0.1620 1.315

Dodge City 37.74 2100.03 79,254 0.3800 1.155

John Martin 38.07 2102.93 48,990 0.1100 1.439

Los Animos 38.08 2103.22 36,198 0.3140 1.210

Pueblo 38.25 2104.61 12,375 0.2610 1.265

Fig. 5. Specific discharge grids over the Arkansas River basin estimated using (a) the most downstream gage, (b) two the most downstream

gages, and (c) all 7 gages.
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that are not yet represented in HL-RMS (e.g.

reservoirs, backwater effects, and the weakness of

the kinematic routing to represent wave propagation

on large flat rivers). However, the model can provide

high resolution information on drought and flood

conditions over a large region which can be used, at

least qualitatively, for flash-flood monitoring without

further development. As an example, Fig. 6 shows soil

moisture and channel state grids over the Arkansas

River basin before and after a storm event which can

Fig. 6. Simulated SAC-SMA states (UZ Saturation and LZ Free Saturation) and channel cross-section area (Flow Area) over the Arkansas River

basin before and after a storm. Storm event cumulative rainfall is also shown in the top plot.
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identify potential dry and flood prone areas to a 4 km

grid resolution. In this figure, soil moisture states were

converted into soil moisture saturation ratios (UZ for

the upper zone total tension and free water, and LZ for

the lower zone free water). As expected, the upper

zone is more sensitive to a short-term rainfall pattern

than the lower zone. At the same time, differences in

local basin properties transform significantly the

rainfall-based spatial pattern. At this time, we do not

have representative measured soil moisture data to

compare. However, future progress in analyses of

satellite-based soil moisture estimates may provide

valuable data bases to evaluate model results. Channel

cross-section area maps provide spatial and temporal

distribution of available fresh water in a stream

network.

HL-RMS runs over large areas provide a frame-

work for transitioning from a low resolution basin

representation (lumped type approach) to a high

resolution prediction system. Studies on specific

watersheds can begin to populate the HL-RMS initial

grids with more accurate parameter estimates, and to

refine the regional picture. Base regional runs also

help to identify the most critical watersheds to work

with, and to analyze effects of parameter estimate

improvements over wide range of basins. As an

example, Fig. 7 shows the sensitivity of simulated

outlet hydrograph to refinement of routing parameters

by using the gage closest to the outlet. It suggests that

for the selected outlet, Arkansas City, the effect of

routing parameter extrapolation from a basin as large

as 388,440 km2 (Ft. Smith) may not be significantly

different than extrapolation from a 113,217 km2 basin

(Tulsa) although estimated discharge vs. cross-section

relationships differ significantly. Note that observed

hydrograph was available at a daily time interval

while simulation results were plotted at hourly time

interval.

4.2. Hydrograph simulations at selected watershed

outlets

These tests were performed for a number of

headwater watersheds within the domain of the

Arkansas-Red Rivers as shown in Fig. 3. These basins

range in drainage areas from a few tens to a few

thousand square kilometers. Grids of a priori SAC-

SMA parameters discussed in Section 4.2 were used

as initial estimates. However, channel specific

discharge and power parameter grids were replaced

by new estimates using discharge measurements at the

selected watershed outlets. Both methods described in

Section 3.2.2, are used to generate these grids.

Because these parameter extrapolation procedures

are based on general stream channel law assumptions,

it is not easy to evaluate them quantitatively using

local point measurements. Fig. 8 is a qualitative check

of the pattern of channel width variations along the

main stem of the Blue River predicted using channel

Fig. 8. Channel top width of the Blue River derived using the

channel shape method at a selected flow level. Measured bankfull

width is shown with triangles.

Fig. 7. Simulated hydrographs at the Arkansas City gage using

routing parameter estimates from: Arkansas City (thick line), Tulsa

(thin line), and Ft. Smith (dotted line). Observed daily discharges

are shown in circles, October 31–November 11, 1998.
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shape method compared to the pattern of actual

channel top width measurements made in the field.

Our main concern is the pattern rather than the

absolute width because channel bankfull width is

measured in the field and there is no channel bank in

the simplified conceptual channel defined by Eq. (10).

The estimated widths in Fig. 8 agree well with

measured bankfull widths over the entire Blue river

stream channel profile. As one would expect, the top

width generally increases with increasing channel

order while significant deviations occur because of

changes in channel slope and roughness. The simpler

rating curve option does not provide information on

channel geometry, and as a result, cannot be useful in

monitoring inundated areas during flood events. All

hydrograph results presented in this section are based

on routing parameter grids generated using the

channel shape method.

Two critical questions to consider in evaluating the

potential benefits of distributed modeling for NWS

operations are (1) whether a distributed model can

produce simulations that are comparable to or better

than simulations from existing lumped models, and

(2) is it possible to define a distributed parameter

model calibration strategy that is robust across spatial

scales. We consider the ability to produce simulations

that are comparable to lumped simulations a positive

result because there are other potential benefits from

running a distributed model: the ability to simulate

flows at small, ungaged outlets within a watershed,

and the ability to incorporate future sources of spatial

data that describe hydrologic variables are good

examples.

Continuous discharge simulations at an hourly

time step were generated from June 1993 to July 2000

for the DMIP watersheds in Fig. 3. HL-RMS results

are evaluated against both hourly observed hydro-

graphs and simulated hydrographs from a lumped

version of the SAC-SMA model paired with a unit

hydrograph (UHG) routing procedure. First, ‘refer-

ence’ results were generated using a priori estimates

of water balance and routing parameters for both HL-

RMS and a lumped application of the SAC-SMA/

UHG model. A priori lumped SAC-SMA parameters

were calculated as a simple average of 1-km grids, and

unit hydrographs were estimated using an extended

Clark’s method (Kull and Feldman, 1998). Second, a

priori SAC-SMA parameter grids were adjusted

as discussed in Section 3.3, using lumped calibration

results for defined watersheds. Lumped calibration

was performed independently using NWS interactive

manual calibration procedures (Smith et al., 2003).

Major adjustments to gridded parameter values were

achieved by direct scaling from lumped calibrated

parameters. Further minor adjustments of a few upper

zone parameter scale factors were made using a

manual trail-and-error process.

Table 4 presents statistical analyses of these

distributed and lumped simulations. Shown are two

statistics for selected flood events: percent of mean

absolute error of flood runoff, dvol; and percent of

mean absolute error of flood peak, dpeak: Also

presented are two overall statistics describing the

entire simulation period: percent of root mean square

error, dRMS; and a correlation coefficient of hourly

discharges, R :

dvol ¼

XN

i¼1
lVo;i 2 Vs;ilXN

i¼1
Vo;i

£ 100% ð21Þ

dpeak ¼

XN

i¼1
lQpo;i 2 Qps;ilXN

i¼1
Qpo;i

£ 100% ð22Þ

dRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

j¼1
ðQo;j 2 Qs;jÞ

2
=M

q
XM

j¼1
Qo;j=M

£ 100% ð23Þ

where Vo;i and Vs;i are observed and simulated flood

event runoffs, Qpo;i and Qps;i are observed and

simulated flood peaks, N is a number of selected

flood events, Qo;j and Qs;j are observed and simulated

hourly discharges, and M is the number of hourly

discharges for the simulation period.

A few observations can be made about the results

in Table 4. While distributed and lumped simulations

can both produce reasonable flood event simulations

for calibrated watersheds, distributed model results

are slightly better. However, only Blue River

simulations showed improvements over lumped

simulations for the entire test period. Other water-

sheds yielded overall results comparable to lumped

simulations with a slight decrease in accuracy. It is

important to note that simulations for two nested

basins, Savoy and Kansas, (not calibrated directly, but
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parameters from the calibration of the parent basin

were applied instead) outperformed lumped simu-

lations even more consistently than we would expect

from a distributed model. Consistent improvements

from the uncalibrated parameter version of HL-RMS

over uncalibrated lumped simulations were achieved

for most watersheds except the Blue River. It means

that the spatial pattern of a priori parameters coincides

hydrologically with the patterns of spatially variable

rainfall. In other words, the spatial variation in the

hydrologic model parameters combines with the

patterns of precipitation to produce reasonable

discharge hydrographs. This fact is critical in devel-

oping a distributed model calibration strategy. It

suggests that the parameter scaling procedure used in

this analysis may be a reasonable component in a

multi-step calibration process. Poor results were

achieved for both distributed and lumped simulations

for the smallest watershed (Peacheater Creek at

Christie). Note that there was no calibration at this

outlet. It is perhaps not difficult to accept this result

because the effects of the scaling factor decrease

significantly if calibrated parameters from a large

parent basin (in this case Baron Fork at Eldon) are

applied at much smaller nested basin (Koren et al.,

1999). Another reason is that only four grid cells are

used in a distributed representation of this basin. Such

a small number of cells may not be enough to

adequately capture the rainfall variability and prop-

erly represent the actual channel structure (Kouwen

and Garland, 1989).

While Table 4 presents overall statistics, Fig. 9a

and b are plots of peak and volume errors of each

selected flood event calculated from distributed and

lumped simulations for the Baron Fork river at Eldon.

As seen from these figures, HL-RMS outperforms

lumped simulations for most flood events especially

with regard to peak flows. The bigger improvement of

flood peak simulations compared to flood volume may

be attributed to the combined effects of spatial and

temporal variability of rainfall as well as distributed

routing. Results of this type were also obtained for

other watersheds. Fig. 10 shows hydrographs for two

events in the Blue River which were selected from the

7 year continuous hourly simulations. Several other

flood events during this period show similar results.

Table 4

Accuracy statistics for selected headwater watersheds in the Arkansas river basin

Watershed Area (km2) HL-RMS simulations Lumped simulations

dvol dpeak. dRMS R dvol. dpeak. dRMS R

Calibrated parameters

Blue 1232.8 25.0 25.0 139.0 0.87 23.0 35.0 141.0 0.86

Eldon 795.1 16.4 25.7 131.0 0.90 18.5 26.0 114.5 0.92

Tahlequah 2483.8 11.3 20.5 70.8 0.92 12.6 25.8 64.9 0.94

Watts 1644.6 11.9 26.4 86.5 0.92 12.9 30.2 82.8 0.93

Savoya 432.8 19.9 52.2 185.6 0.86 20.9 52.0 196.7 0.85

Kansasa 284.9 23.8 53.0 161.7 0.81 23.7 55.8 189.6 0.73

Christiea 64.8 55.4 115.0 360.8 0.72 52.8 126.0 338.9 0.83

Uncalibrated parameters

Blue 1232.8 38.0 40.3 187.0 0.81 31.0 42.8 163.0 0.83

Eldon 795.1 27.4 45.3 160.0 0.84 30.2 53.4 181.9 0.79

Tahlequah 2483.8 13.4 19.2 84.5 0.90 23.7 25.6 97.2 0.86

Watts 1644.6 13.8 26.0 105.8 0.89 23.1 30.5 109.9 0.87

Savoy 432.8 22.4 49.8 194.2 0.85 29.1 54.5 228.6 0.79

Kansas 284.9 24.2 52.2 185.1 0.75 26.9 57.1 221.1 0.62

Christie 64.8 34.8 88.3 323.5 0.70 32.4 67.1 254.7 0.78

Values in italic mean that this statistics is better for Distributed (Lumped) simulations compared to Lumped (Distributed).
a Nested basins (Savoy and Kansas are sub-basins of Tahlequah, Illinois river, and Christie is sub-basin of Eldon, Baron Fork river): these sub-

basins actually were not calibrated, instead parent basin calibrated parameters were used in simulations.
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Fig. 10a shows flood event hydrographs when the

rainfall distribution over the watershed was highly

non-uniform: 50–120 mm of rain over less than 35%

of the lower portion of the watershed with only

0–25 mm rain over the rest of area. Not surprisingly,

the distributed model outperforms the lumped model

during this flood event. Fig. 10b shows that the

lumped and distributed simulations are comparable in

cases with less spatial rainfall variability. In this

event, rainfall variability was in range of 60–90 mm

over the entire watershed. Although the effects of

rainfall variability are evident in other watersheds,

they are not as strong as in the Blue River case. The

Blue River appears to be unique among the water-

sheds studied in its response to spatial rainfall

patterns, most likely due to a number of factors

including differences in basin shape and orientation.

The Blue basin is long, narrow, and orthogonal to

typical storm directions, which lead to well organized

rainfall patterns partially covering either the upper or

lower portions of the basin. As a result, flood wave

attenuation may vary significantly even for the same

amount of total basin lateral inflow. More detailed

analysis on this effect and numerical test results can be

found in Zhang et al. (2004). One must also consider

the possible dampening effects of deeper soils in the

Watts and Eldon watersheds. Perhaps the lack of

significant gain from a distributed model in Watts

Fig. 9. (a) Peak errors from lumped and distributed simulations for

the Baron Fork at Eldon. (b) Flood volume errors from lumped and

distributed simulations for the Baron Fork at Eldon.

Fig. 10. Observed and simulated hydrographs for the Blue River: (a)

non-uniform rainfall, April 3–6, 1999, and (b) uniform rainfall,

March 16–23, 1998.
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and Eldon may be explained by the suggestion of

Obled et al. (1994) and Naden (1992) that the spatial

variability of precipitation may not be sufficiently

organized to overcome the effects of hillslope storage

and dampening within the basin.

5. Summary

Operational river forecasting over a large range of

spatial and temporal scales such as that performed by

the NWS introduces tremendous demands on hydro-

logic modeling. Huge data uncertainties and tremen-

dous horizontal and vertical heterogeneities of basin

properties may override the benefits of sophisticated

physically-based models at some scales. The par-

ameter estimation problem becomes very critical

especially when available data in practical appli-

cations are reduced to a limited number of local area

responses that represent the integrated effects of

distributed physical properties. In this regard, lumped

conceptual models have an advantage because their

parameters represent integrated effects of basin

properties, and as a result, they are more readily

identified from hydrograph analyses. However, a

significant disadvantage with lumped models is the

inability to represent the spatial variability of

processes such as precipitation and runoff generation.

This study investigates an approach to combine

physically-based and conceptual model features in the

both stages of distributed modeling: model structure

development and estimation of spatially variable

parameters. The approach adds more practicality to

the process of model parameterization, and facilitates

an easier transition from current lumped model-based

operational systems to more powerful distributed

systems. HL-RMS provides a flexible framework for

rainfall-runoff analysis and practical applications of

distributed models. Quasi-operational tests suggest

also that the system is computationally feasible to run

over large regions.

HL-RMS shows the potential to improve the

accuracy and resolution of river runoff forecasts.

Initial test results suggest that the distributed system

produces simulations that are comparable to or

better than the simulations generated by a well

calibrated lumped model. While improved overall

flood event statistics were found for most tested

watersheds, the greatest benefit was achieved for

events where the spatial variability of rainfall was

significant. It is also significant that HL-RMS

outperforms a lumped model for uncalibrated nested

basins (excluding one basin which is too small to be

well represented at the chosen grid scale) that could

be the most important benefit of the distributed

system.

Schemes developed to estimate distributed routing

parameters based on local grid cell and basin outlet

integrated properties produce reasonable results for

the range of spatial scales studied without any

calibration. Progress has been made in quantitatively

estimating spatially variable rainfall-runoff par-

ameters by combining soil properties and lumped

calibration results, but more robust methods to

calibrate the distributed parameter model remain to

be defined.

HL-RMS can also provide valuable high resolution

information on soil moisture and channel states over

large regions that can support better monitoring of

drought and flash-flood prone areas, and describe the

dynamics of spatially distributed water resources.

6. Future work

Although tests performed in this study with

actual observed data have shown the potential of

distributed modeling, replacing the current lumped

model-based NWS operational forecast system with

a distributed modeling system is not a trivial task

from either a scientific or systems engineering

standpoint. Continued improvement of the model

parameterization process is needed and well-defined

procedures for calibration, real-time data processing,

and real-time updating are still lacking, yet they are

as important as the use of advanced modeling

techniques. Several additional steps are necessary to

refine the modeling approach and hasten operational

implementation.

1. Refine the rainfall-runoff model parameter esti-

mation procedure to make it less scale dependent

and more objective. Success in this area will

hasten HL-RMS implementation over a range of

basin scales including flash flood type

watersheds.
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2. Operational forecasts include a significant num-

ber of human quality control steps and run-time

modifications for manual state updating. It is

more difficult to perform these tasks with a

distributed system that generates spatially vari-

able states. Continued research on automatic

assimilation/updating techniques (Seo et al.,

2003) is needed to develop an objective, robust

procedure for real-time modifications of spatially

variable boundary conditions and states.

3. Analyze the effects of real-time data uncertainties

on simulation results from models of different

complexity. The Distributed Modeling Intercom-

parison Project (DMIP, 2002) that brought a wide

range of distributed models provides a good

framework for such tests.

4. Run HL-RMS with a priori SAC-SMA par-

ameters in real-time over large areas (e.g. over

a River Forecast Center (RFC) domain or

multiple RFC region). High resolution soil

moisture and channel states may be of immediate

use by operational field offices as supplemental

diagnostic information, and by researchers for a

variety of scale analyses. Continuous real-time

runs at an RFC will initiate a learning process for

operational users on the strengths and weaknesses

of the system, and will identify watersheds where

work on parameter fine-tuning will be beneficial.

5. Implement the distributed routing component into

the current NWS River Forecast System to route

runoff from existing lumped models, thus captur-

ing the spatial variability of the rainfall but not

requiring re-calibration of the water balance

component. This will require widespread analysis

of flow measurement data at many gages over

large areas to refine routing parameter estimation

methods, to provide better guidance for users in

deriving local parameters, and to develop basic

routing parameter grids for large areas.
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